4.4 Article

Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink

Journal

HEAT AND MASS TRANSFER
Volume 44, Issue 6, Pages 679-693

Publisher

SPRINGER
DOI: 10.1007/s00231-007-0299-7

Keywords

-

Ask authors/readers for more resources

Laminar double-diffusive natural convective flow of a binary fluid mixture in inclined square and rectangular cavities filled with a uniform porous medium in the presence of temperature-difference dependent heat generation (source) or absorption (sink) is considered. Transverse gradients of heat and mass are applied on two opposing walls of the cavity while the other two walls are kept adiabatic and impermeable to mass transfer. The problem is put in terms of the stream function-vorticity formulation. A numerical solution based on the finite-difference methodology is obtained for relatively high Lewis numbers. Representative results illustrating the effects of the inclination angle of the cavity, buoyancy ratio, Darcy number, heat generation or absorption coefficient and the cavity aspect ratio on the contour maps of the streamline, temperature, and concentration as well as the profiles of velocity, temperature and concentration at mid-section of the cavity are reported. In addition, numerical results for the average Nusselt and Sherwood numbers are presented for various parametric conditions and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available