4.4 Article

Visualization and characterization of UVB-induced reactive oxygen species in a human skin equivalent model

Journal

ARCHIVES OF DERMATOLOGICAL RESEARCH
Volume 300, Issue -, Pages S51-S56

Publisher

SPRINGER
DOI: 10.1007/s00403-007-0804-3

Keywords

reactive oxygen species; visualization; human skin equivalent model; chemiluminescence; 8-OHdG

Categories

Ask authors/readers for more resources

Reactive oxygen species (ROS) play important roles in the process of ultraviolet-induced skin damage or photoaging. Although many enzymatic and chemical methods have been developed for evaluating ROS, evaluation methods for ROS generation in living systems are quite limited. Here we propose a unique system to visualize UVB-induced ROS and investigate the biological impact of ROS. In brief, a human skin equivalent model (HSEM) was exposed to UVB. Emitted luminescence from the HSEM was visualized and semi-quantified by using a chemiluminescent probe (CLA) and an ultra low-light imaging apparatus. The effects of anti-oxidative compounds such as ascorbate, beta-carotene, superoxide dismutase (SOD), and yeast ferment filtrate (YFF) on the HSEM were evaluated by semi-quantification of emitted chemiluminescence (CL) intensities, MTT assay and 8-hydroxy-2'-deoxyguanosine (8-OHdG) staining. Visualization of time- and space-dependent dynamics of ROS generation in the HSEM was successfully achieved by utilizing a sensitive two-dimensional ultra-low light luminograph. Treatments with beta-carotene and SOD effectively suppressed CL intensity, indicating the generation of O-1(2) and O-2(-) in the HSEM under UVB exposure. Tested anti-oxidative compounds also attenuated UVB-induced CL and ameliorated the induced skin damages in terms of 8-OHdG formation and cell death. As a conclusion, this model is useful for not only visualizing the production of UVB-induced ROS in real-time but also evaluating the efficacy of topically applied anti-oxidative compounds to suppress ROS generation and attenuate sequential chemical and biological responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available