4.7 Article

Entropy generation in mixed convection magnetohydrodynamic nanofluid flow in vertical channel

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 91, Issue -, Pages 1026-1033

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2015.08.042

Keywords

Nanofluid; Entropy generation; Bejan number; Mixed convection; Vertical channel; MHD flow

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 104-2221-E-018-022]

Ask authors/readers for more resources

A numerical investigation is performed into the heat transfer performance and entropy generation characteristics of a mixed convection magnetohydrodynamic (MHD) flow of Al2O3-water nanofluid in a vertical asymmetrically-heated parallel-plate channel subject to viscous dissipation effects. In performing the analysis, the effects of the Lorentz force and Joule heating are modeled using the transverse momentum balance equation and energy balance equation, respectively. Moreover, the Hartmann number is assigned a value of Hm = 0 (no magnetic field) or Hm = 2 (weak magnetic field). The results show that the presence of the magnetic field increases the local Nusselt number at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. The local Nusselt number at the cold wall also increases with an increasing nanoparticle concentration. However, for a constant particle concentration, the Nusselt number reduces given the application of a magnetic field. Finally, the average entropy generation number also reduces when a magnetic field is applied. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available