4.3 Article

Permeability properties of the teleost gill epithelium under ion-poor conditions

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00577.2011

Keywords

paracellular permeability; tight junction; claudin; occludin; ZO-1; pavement cell; mitochondria-rich cell

Categories

Funding

  1. NSERC
  2. NSERC Discovery Accelerator Supplement and Canadian Foundation for Innovation new opportunities

Ask authors/readers for more resources

Chasiotis H, Kolosov D, Kelly SP. Permeability properties of the teleost gill epithelium under ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 302: R727-R739, 2012. First published December 28, 2011; doi:10.1152/ajpregu.00577.2011.-Permeability properties of the goldfish gill epithelium were examined in vivo and in vitro following exposure to ion-poor water (IPW) conditions. In gill tissue of IPW-acclimated goldfish, transcript abundance of tight junction (TJ) proteins occludin, claudin-b, -d, -e, -h, -7, and -8d increased, whereas ZO-1 and claudin 12 mRNA decreased and claudin-c was unaltered. In association with these changes, TJ depth increased among gill pavement cells (PVCs) and gill PVCs and mitochondriarich cells (MRCs). PVC and MRC gill cell fractions were isolated using Percoll. Transcripts encoding for occludin, claudin-b, -c, -d, -e, -h, -7, -8d, -12, and ZO-1 were present in both fractions. After IPW acclimation, occludin, claudin-b and -e, and ZO-1 mRNA abundance increased in both fractions. In contrast, claudin-8d mRNA abundance increased in PVCs only while claudin-h decreased in MRCs. Gill permeability was examined using primary cultured goldfish PVC epithelia supplemented with serum derived from IPW-acclimated goldfish. IPW serum supplementation increased transepithelial resistance, reduced [H-3]PEG-4000 permeability, and enhanced epithelial integrity during in vitro IPW exposure. IPW serum increased mRNA abundance of occludin, claudin-8d and -e in vitro. Using small interfering RNA, we found that occludin abundance was decreased in cultured gill epithelia, resulting in an increase in [H-3]PEG-4000 flux. As occludin increased in the gills of IPW-acclimated fish as well as cultured gill epithelia exposed to IPW serum, results suggest that occludin is a barrier-forming TJ protein in fish gill epithelia. These studies support the idea that TJ proteins play an important role in regulating gill permeability in IPW.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available