4.3 Review

Multiple hypothalamic circuits sense and regulate glucose levels

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00527.2010

Keywords

hypocretin; hypothalamus; neuron; orexin

Categories

Funding

  1. European Research Council
  2. Osk. Huttunen Foundation

Ask authors/readers for more resources

Karnani M, Burdakov D. Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol 300: R47-R55, 2011. First published November 3, 2010; doi:10.1152/ajpregu.00527.2010.-The hypothalamus monitors body energy status in part through specialized glucose sensing neurons that comprise both glucose-excited and glucose-inhibited cells. Here we discuss recent work on the elucidation of neurochemical identities and physiological significance of these hypothalamic cells, including caveats resulting from the currently imprecise functional and molecular definitions of glucose sensing and differences in glucose-sensing responses obtained with different experimental techniques. We discuss the recently observed adaptive glucose-sensing responses of orexin/hypocretin-containing neurons, which allow these cells to sense changes in glucose levels rather than its absolute concentration, as well as the glucose-sensing abilities of melanin-concentrating hormone, neuropeptide Y, and proopiomelanocortin-containing neurons and the recent data on the role of ventromedial hypothalamic steroidogenic factor-1 (SF-1)/glutamate-containing cells in glucose homeostasis. We propose a model where orexin/hypocretin and SF-1/glutamate neurons cooperate in stimulating the sympathetic outflow to the liver and pancreas to increase blood glucose, which in turn provides negative feedback inhibition to these cells. Orexin/hypocretin neurons also stimulate feeding and reward seeking and are activated by hunger and stress, thereby providing a potential link between glucose sensing and goal-oriented behavior. The cell-type-specific neuromodulatory actions of glucose in several neurochemically distinct hypothalamic circuits are thus likely to be involved in coordinating higher brain function and behavior with autonomic adjustments in blood glucose levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available