4.3 Article

Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00704.2009

Keywords

aorta; DNA array

Categories

Funding

  1. National Institute of Child Health and Human Development [RO3-HD-054920-01]

Ask authors/readers for more resources

Khorram O, Han G, Bagherpour R, Magee TR, Desai M, Ross MG, Chaudhri AA, Toloubeydokhti T, Pearce WJ. Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am J Physiol Regul Integr Comp Physiol 298: R1366-R1374, 2010. First published March 3, 2010; doi: 10.1152/ajpregu.00704.2009.-The aim of this study was to test the hypothesis that maternal undernutrition (MUN) alters offspring vascular expression of micro-RNAs (miRNAs), which, in turn, could regulate the expression of a host of genes involved with angiogenesis and extracellular matrix remodeling. The expression of miRNA and mRNA in the same aortic specimens in 1-day-old (P1) and 12-mo-old offspring aortas of dams, which had 50% food restriction from gestation day 10 to term, was determined by specific rat miRNA and DNA arrays. MUN significantly downregulated the expression of miRNAs 29c, 183, and 422b in the P1 group and 200a, 129, 215, and 200b in the 12-mo group, and upregulated the expression of miRNA 189 in the P1 group and 337 in the 12-mo group. The predicted target genes of the miRNAs altered in the two age groups fell into the categories of: 1) structural genes, such as collagen, elastin, and enzymes involved in ECM remodeling; and 2) angiogenic factors. MUN primarily altered the expression of mRNAs in the functional category of cell cycle/mitosis in the P1 group and anatomic structure and apoptosis in the 12-mo age group. Several of the predicted target genes of miRNAs altered in response to MUN were identified by the DNA array including integrin-beta(1) in the P1 aortas and stearoyl-CoA desaturase-1 in the 12-mo age groups. These results are consistent with the hypothesis that MUN modulation of offspring gene expression may be mediated in part by a miRNA mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available