4.3 Article

Cerebrovascular responses in mice deficient in the potassium channel, TREK-1

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00057.2010

Keywords

potassium channels; two-pore domain potassium channels (K-2P); cerebrovascular circulation; vasodilation; TREK-1 knockout; KCNK2

Categories

Funding

  1. American Heart Association, South Central Affiliate [0815342F]
  2. National Institutes of Health [RO1 NS46666, P01 NS038660, RO1 HL088435, R01 HL22512, K25 HL73041]

Ask authors/readers for more resources

Namiranian K, Lloyd EE, Crossland RF, Marrelli SP, Taffet GE, Reddy AK, Hartley CJ, Bryan RM, Jr. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. Am J Physiol Regul Integr Comp Physiol 299: R461-R469, 2010. First published March 31, 2010; doi: 10.1152/ajpregu.00057.2010.-We tested the hypothesis that TREK-1, a two-pore domain K channel, is involved with dilations in arteries. Because there are no selective activators or inhibitors of TREK-1, we generated a mouse line deficient in TREK-1. Endothelium-mediated dilations were not different in arteries from wild-type (WT) and TREK-1 knockout (KO) mice. This includes dilations of the middle cerebral artery to ATP, dilations of the basilar artery to ACh, and relaxations of the aorta to carbachol, a cholinergic agonist. The nitric oxide (NO) and endothelium-dependent hyperpolarizing factor components of ATP dilations were identical in the middle cerebral arteries of WT and TREK-1 KO mice. Furthermore, the NO and cyclooxygenase-dependent components were identical in the basilar arteries of the different genotypes. Dilations of the basilar artery to alpha-linolenic acid, an activator of TREK-1, were not affected by the absence of TREK-1. Whole cell currents recorded using patch-clamp techniques were similar in cerebrovascular smooth muscle cells (CVSMCs) from WT and TREK-1 KO mice. alpha-linolenic acid or arachidonic acid increased whole cell currents in CVSMCs from both WT and TREK-1 KO mice. The selective blockers of large-conductance Ca-activated K channels, penitrem A and iberiotoxin, blocked the increased currents elicited by either alpha-linolenic or arachidonic acid. In summary, dilations were similar in arteries from WT and TREK-1 KO mice. There was no sign of TREK-1-like currents in CVSMCs from WT mice, and there were no major differences in currents between the genotypes. We conclude that regulation of arterial diameter is not altered in mice lacking TREK-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available