4.3 Review

Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.91008.2008

Keywords

cerebral blood flow; ventilation; reactivity

Categories

Ask authors/readers for more resources

Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296: R1473-R1495, 2009. First published February 11, 2009; doi: 10.1152/ajpregu.91008.2008.-Cerebral blood flow (CBF) and its distribution are highly sensitive to changes in the partial pressure of arterial CO2 (PaCO2). This physiological response, termed cerebrovascular CO2 reactivity, is a vital homeostatic function that helps regulate and maintain central pH and, therefore, affects the respiratory central chemoreceptor stimulus. CBF increases with hypercapnia to wash out CO2 from brain tissue, thereby attenuating the rise in central PCO2, whereas hypocapnia causes cerebral vasoconstriction, which reduces CBF and attenuates the fall of brain tissue PCO2. Cerebrovascular reactivity and ventilatory response to PaCO2 are therefore tightly linked, so that the regulation of CBF has an important role in stabilizing breathing during fluctuating levels of chemical stimuli. Indeed, recent reports indicate that cerebrovascular responsiveness to CO2, primarily via its effects at the level of the central chemoreceptors, is an important determinant of eupneic and hypercapnic ventilatory responsiveness in otherwise healthy humans during wakefulness, sleep, and exercise and at high altitude. In particular, reductions in cerebrovascular responsiveness to CO2 that provoke an increase in the gain of the chemoreflex control of breathing may underpin breathing instability during central sleep apnea in patients with congestive heart failure and on ascent to high altitude. In this review, we summarize the major factors that regulate CBF to emphasize the integrated mechanisms, in addition to PaCO2, that control CBF. We discuss in detail the assessment and interpretation of cerebrovascular reactivity to CO2. Next, we provide a detailed update on the integration of the role of cerebrovascular CO2 reactivity and CBF in regulation of chemoreflex control of breathing in health and disease. Finally, we describe the use of a newly developed steady-state modeling approach to examine the effects of changes in CBF on the chemoreflex control of breathing and suggest avenues for future research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available