4.3 Article

Specific expression and regulation of glucose transporters in zebrafish ionocytes

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00180.2009

Keywords

mitochondrion-rich cells; ion transport; environment; adaptation; epithelium

Categories

Funding

  1. National Science Council, and Academia Sinica, Taiwan, ROC

Ask authors/readers for more resources

Tseng YC, Chen RD, Lee JR, Liu ST, Lee SJ, Hwang PP. Specific expression and regulation of glucose transporters in zebrafish ionocytes. Am J Physiol Regul Integr Comp Physiol 297: R275-R290, 2009. First published May 20, 2009; doi:10.1152/ajpregu.00180.2009.-Glucose, a carbohydrate metabolite, plays a major role in the energy supply for fish iono- and osmoregulation, and the way that glucose is transported in ionocytes is a critical process related to the functional operations of ionocytes. Eighteen members of glucose transporters (GLUTs, SLC2A) were cloned and identified from zebrafish. Previously, Na+, K+-ATPase-rich (NaR), Na+-Cl- cotransporter-expressing (NCC), H+-ATPase-rich (HR), and glycogen-rich (GR) cells have been identified to be responsible for Ca2+ uptake, Cl- uptake, Na+ uptake, and the energy deposition, respectively, in zebrafish skin/gills. The purpose of the present study was to test the hypothesis of whether GLUT isoforms are specifically expressed and function in ionocytes to supply energy for ion regulatory mechanisms. On the basis of translational knockdown of foxi3a/3b (2 transcriptional factors related to the ionocytes' differentiation) and triple in situ hybridization/immunocytochemistry, 3 GLUT isoforms, zglut1a, -6, and -13.1, were specifically localized in NaR/NCC cells, GR cells, and HR cells, respectively. mRNA expression of zglut1a in embryos and adult gills were stimulated by the low Ca2+ or low Cl- freshwater, which has been previously reported to upregulate the functions (monitored by epithelial Ca2+ channel, NCC mRNA) of NaR/NCC cells, respectively while that of zglut13.1 was stimulated only by low Na+, a situation to upregulate the function (monitored by carbonic anhydrase 15a mRNA) of HR cells. On the other hand, ambient ion compositions did not affect the zglut6 mRNA expression. Taken together, zGLUT1a, -6, and 13.1, the specific transporters in NaR/NCC cells, GR cells, and HR cells, may absorb glucose into the respective cells to fulfill different physiological demands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available