4.3 Article

Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00236.2009

Keywords

myosin heavy-chain isoforms; hibernation; skeletal muscle hypertrophy; FOXO; ubiquitin ligases

Categories

Funding

  1. National Institutes of Health Minority Biomedical Research [GM-063119]
  2. California State University, Long Beach

Ask authors/readers for more resources

Choi H, Selpides PJ, Nowell MM, Rourke BC. Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol 297: R578-R586, 2009. First published June 24, 2009; doi: 10.1152/ajpregu.00236.2009.-We performed 2 wk of mechanical overload by synergist ablation on plantaris muscles from a small rodent hibernator, Spermophilus lateralis. While this muscle displays prominent myosin heavy-chain (MyHC) isoform shifts during hibernation, sensitivity to mechanical loading as a stimulus for muscle mass and isoform plasticity has not been demonstrated. Squirrel muscles, whether during hibernation or not, potentially are less sensitive to mechanical unloading, but we hypothesized that increased loading would produce the typical mammalian response of greater plantaris mass and MyHC shifts. Mechanical overload produced a 50% increase in muscle mass but, surprisingly, no changes in MyHC isoform protein or mRNA expression, despite previously observed fast-to-slow MyHC isoform switching during hibernation. Citrate synthase enzyme activity, as well as mRNA expression of creatine kinase and the muscle growth factor myostatin, were all unchanged. The mRNA expression of critical muscle atrophy genes decreased by 50% during hypertrophy, including ubiquitin ligases MuRF1 and MAFbx, and the related transcription factor FOXO-1a. Insulin-like growth factor (IGF-1) and hypoxia-inducible factor (HIF-1 alpha) mRNA expression was elevated by 400% and 150%. Fast-to-slow MyHC isoform shifts appear unnecessary to support the increased recruitment of the plantaris muscle, shifts which are seen in other rodent models. Our results are consistent with muscular activity during interbout arousals as a potential mechanism to preserve muscle mass, but illustrate the primary importance of other seasonal factors besides patterns of muscle activation which must act in concert to alter MyHC isoforms and muscle fiber type during hibernation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available