4.7 Article

The Causal Role of IL-4 and IL-13 in Schistosoma mansoni Pulmonary Hypertension

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1164/rccm.201410-1820OC

Keywords

pulmonary hypertension; schistosomiasis; Th2 cells; transforming growth factor-beta

Funding

  1. National Institutes of Health [K08HL105536, P01HL014985-41, R24HL123767]
  2. American Thoracic Society Foundation/Pulmonary Hypertension Association Research Fellowship
  3. Gilead Sciences Research Scholars Program in Pulmonary Arterial Hypertension
  4. University of Colorado Department of Medicine Early Career Scholars Program
  5. Advancing Science through Pfizer-Investigator Research Exchange Program
  6. Novartis Pharmaceuticals

Ask authors/readers for more resources

Rationale: The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-beta signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure. Objectives: We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-beta-dependent vascular remodeling. Methods: Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed. Measurements and Main Results: Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-beta activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation. Conclusions: Combined IL-4 and IL-13 deficiency is required for protection against TGF-beta-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available