4.3 Article

Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00915.2007

Keywords

osmoregulation; teleost; tight junction; epithelia; quantitative polymerase chain reaction; expressed sequence tags; Salmo salar

Categories

Ask authors/readers for more resources

Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification. Am J Physiol Regul Integr Comp Physiol 294: R1563-R1574, 2008. First published March 5, 2008; doi:10.1152/ajpregu.00915.2007.-In euryhaline teleosts, permeability changes in gill epithelia are essential during acclimation to changed salinity. This study examined expression patterns of branchial tight junction proteins called claudins, which are important determinants of ion selectivity and general permeability in epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequence tag libraries available at NCBI, and classification was performed with the aid of maximum likelihood analysis. In gill libraries, five isoforms ( 10e, 27a, 28a, 28b, and 30) were present, and quantitative PCR analysis confirmed tissue-specific expression in gill when compared with kidney, intestine, heart, muscle, brain, and liver. Expression patterns during acclimation of freshwater salmon to seawater ( SW) and during the smoltification process were examined. Acclimation to SW reduced the expression of claudin 27a and claudin 30 but had no overall effect on claudin 28a and claudin 28b. In contrast, SW induced a fourfold increase in expression of claudin 10e. In accord, a peak in branchial claudin 10e was observed during smoltification in May, coinciding with optimal SW tolerance. Smoltification induced no significant changes in expression of the other isoforms. This study demonstrates the expression of an array of salmon claudin isoforms and shows that SW acclimation involves inverse regulation, in the gill, of claudin 10e vs. claudin 27a and 30. It is possible that claudin 10e is an important component of cation selective channels, whereas reduction in claudin 27a and 30 may change permeability conditions in favor of the ion secretory mode of the SW gill.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available