4.5 Article

Intranasal priming of newborn mice with microbial extracts increases opsonic factors and mature CD11c+ cells in the airway

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00031.2012

Keywords

commensal flora; regulation of acute inflammation; surfactants

Funding

  1. Japanese Society for Promotion of Science [15659239]
  2. Collaboration Study Project for House Medicine in Nara Medical University
  3. Grants-in-Aid for Scientific Research [15659239, 23590515] Funding Source: KAKEN

Ask authors/readers for more resources

Kasahara K, Matsumura Y, Ui K, Kasahara K, Komatsu Y, Mikasa K, Kita E. Intranasal priming of newborn mice with microbial extracts increases opsonic factors and mature CD11c+ cells in the airway. Am J Physiol Lung Cell Mol Physiol 303: L834-L843, 2012. First published August 24, 2012; doi:10.1152/ajplung.00031.2012.-Nasal exposure to the mixture of microbial extracts (MME) after ablactation enhanced airway resistance of newborn mice to Streptococcus pneumoniae (J Physiol Lung Cell Mol Physiol 298: L67, 2010). The present study was addressed to elucidate effective factors responsible for the enhanced innate resistance in the airway of MME-exposed newborn mice. MME exposure significantly increased the amount of pulmonary surfactants (SP-A and SP-D) in the airway. Bronchoalveolar lavage fluid of the exposed mice exhibited greater levels of opsonic activity, thereby enhancing the phagocytic and intracellular killing activities of alveolar macrophages (Mempty set) against S. pneumoniae. The exposure itself did not increase a complement component C3 and mannan-binding lectin-A (MBL-A) in the airway, whereas intratracheal infection with S. pneumoniae increased the quantity of SP-A, SP-D, C3, and MBL-A in the exposed mice to a significant extent compared with control mice. The exposure enhanced the expression of the class A scavenger Mempty set receptor with collagenous structure on alveolar Mempty set and also increased the frequency of major histocompatibility complex II+ CD11c+ cells in the lung; the cells were able to produce IL-10 and transforming growth factor-beta in vitro. These results suggest that microbial exposure early in life increases the amounts of SP-A and SP-D and the number of scavenger Mempty set and also promotes maturation of CD11c+ cells in the airway of newborn mice, which may be involved in airway resistance to S. pneumoniae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available