4.5 Article

Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved

Journal

FUNCTIONAL & INTEGRATIVE GENOMICS
Volume 8, Issue 2, Pages 101-108

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10142-007-0067-2

Keywords

Oryza sativa; chloroplast DNA insertion; direct-repeat; retrotransposon; indica; japonica divergence

Ask authors/readers for more resources

Rice (Oryza sativa) is one of three predominant grain crops, and its nuclear and organelle genomes have been sequenced. Following genome analysis revealed many exchanges of DNA sequences between the nuclear and organelle genomes. In this study, a total of 45 chloroplast DNA insertions more than 2 kb in length were detected in rice nuclear genome. A homologous recombination mechanism is expected for those chloroplast insertions with high similarity between their flanking sequences. Only five chloroplast insertions with high sequence similarity between two flanking sequences from an insertion were found in the 45 insertions, suggesting that rice might follow the non-homologous end-joining (NHEJ) repair of double-stranded breaks mechanism, which is suggested to be common to all eukaryotes. Our studies indicate that the most chloroplast insertions occurred at a nuclear region characterized by a sharp change of repetitive sequence density. One potential explanation is that regions such as this might be susceptible target sites or hotspots of DNA damage. Our results also suggest that the insertion of retrotransposon elements or non-chloroplast DNA into chloroplast DNA insertions may contribute significantly to their fragmentation process. Moreover, based on chloroplast insertions in nuclear genomes of two subspecies (indica and japonica) of cultivated rice, our results strongly suggest that they diverged during 0.06-0.22 million years ago.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available