4.5 Article

Diaphragm muscle fiber function and structure in humans with hemidiaphragm paralysis

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00040.2011

Keywords

mechanical ventilation; phrenic nerve denervation; diaphragm unloading; contractile function

Funding

  1. Netherlands Organisation for Scientific Research (NWO) [016.096.043, 917.96.306]
  2. European Respiratory Society/Marie Curie Joint Research Fellowship [MC 1120-2009]

Ask authors/readers for more resources

Welvaart WN, Paul MA, van Hees HW, Stienen GJ, Niessen JW, de Man FS, Sieck GC, Vonk-Noordegraaf A, Ottenheijm CA. Diaphragm muscle fiber function and structure in humans with hemidiaphragm paralysis. Am J Physiol Lung Cell Mol Physiol 301: L228-L235, 2011. First published May 27, 2011; doi:10.1152/ajplung.00040.2011.-Recent studies proposed that mechanical inactivity of the human diaphragm during mechanical ventilation rapidly causes diaphragm atrophy and weakness. However, conclusive evidence for the notion that diaphragm weakness is a direct consequence of mechanical inactivity is lacking. To study the effect of hemidiaphragm paralysis on diaphragm muscle fiber function and structure in humans, biopsies were obtained from the paralyzed hemidiaphragm in eight patients with hemidiaphragm paralysis. All patients had unilateral paralysis of known duration, caused by en bloc resection of the phrenic nerve with a tumor. Furthermore, diaphragm biopsies were obtained from three control subjects. The contractile performance of demembranated muscle fibers was determined, as well as fiber ultrastructure and morphology. Finally, expression of E3 ligases and proteasome activity was determined to evaluate activation of the ubiquitin-proteasome pathway. The force-generating capacity, as well as myofibrillar ultrastructure, of diaphragm muscle fibers was preserved up to 8 wk of paralysis. The cross-sectional area of slow fibers was reduced after 2 wk of paralysis; that of fast fibers was preserved up to 8 wk. The expression of the E3 ligases MAFbx and MuRF-1 and proteasome activity was not significantly upregulated in diaphragm fibers following paralysis, not even after 72 and 88 wk of paralysis, at which time marked atrophy of slow and fast diaphragm fibers had occurred. Diaphragm muscle fiber atrophy and weakness following hemidiaphragm paralysis develops slowly and takes months to occur.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available