4.5 Article

Role of matrix metalloprotease-9 in hyperoxic injury in developing lung

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00441.2007

Keywords

morphometry; elastin; bronchopulmonary dysplasia

Funding

  1. National Heart, Lung, and Blood Institute [HL-67089, HL-074859, HL-37930]

Ask authors/readers for more resources

Chetty A, Cao G-J, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol 295: L584-L592, 2008. First published July 25, 2008; doi: 10.1152/ajplung.00441.2007. Matrix metalloprotease-9 (MMP-9) is increased in lung injury following hyperoxia exposure in neonatal mice, in association with impaired alveolar development. We studied the role of MMP-9 in the mechanism of hyperoxia-induced functional and histological changes in neonatal mouse lung. Reduced alveolarization with remodeling of ECM is a major morbidity component of oxidant injury in developing lung. MMP-9 mediates oxidant injury in developing lung causing altered lung remodeling. Five-day-old neonatal wild-type ( WT) and MMP-9 (-/-) mice were exposed to hyperoxia for 8 days. The lungs were inflation fixed, and sections were examined for morphometry. The mean linear intercept and alveolar counts were evaluated. Immunohistochemistry for MMP-9 and elastin was performed. MMP-2, MMP-9, type I collagen, and tropoelastin were measured by Western blot analysis. Lung quasistatic compliance was studied in anaesthetized mice. MMP-2 and MMP-9 were significantly increased in lungs of WT mice exposed to hyperoxia compared with controls. Immunohistochemistry showed an increase in MMP-9 in mesenchyme and alveolar epithelium of hyperoxic lungs. The lungs of hyperoxia-exposed WT mice had less gas exchange surface area and were less compliant compared with room air-exposed WT and hyperoxia-exposed MMP-9 (-/-) mice. Type I collagen and tropoelastin were increased in hyperoxia-exposed WT with aberrant elastin staining. These changes were ameliorated in hyperoxia-exposed MMP-9 (-/-) mice. MMP-9 plays an important role in the structural changes consequent to oxygen-induced lung injury. Blocking MMP-9 activity may lead to novel therapeutic approaches in preventing bronchopulmonary dysplasia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available