4.6 Article

UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00345.2018

Keywords

flow-mediated dilation; hypoxia; shear stress; University of British Columbia

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Foundation for Innovation
  3. Canada Research Chair
  4. Natural Sciences and Engineering Research Council of Canada Doctoral Canada Graduate Scholarships Award
  5. Queen's University Graduate Dean's Travel Grant for Doctoral Field Research

Ask authors/readers for more resources

The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa. would demonstrate decreased mean shear stress and increased retro-grade shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means +/- SD, n = 22, 28 +/- 6 yr) and Sherpa (n = 12, 34 +/- 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 in (baseline), 3,440 m (day 4), 4,371 m (day 7), and 5,050 m (day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 +/- 3.9% to 3.8 +/- 2.8% at 5,050 versus 1,400 m (P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5.050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pat tern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available