4.6 Article

Dantrolene suppresses spontaneous Ca2+ release without altering excitation-contraction coupling in cardiomyocytes of aged mice

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00287.2014

Keywords

aging; Ca2+ sparks; Ca2+ waves; heart; ventricular myocytes

Funding

  1. National Institutes of Health [K01-AG-041208, R01-HL-057852, R01-HL-086483, R37-HL-041026]
  2. University of Missouri Life Sciences undergraduate research opportunity program

Ask authors/readers for more resources

Cardiac dysfunction in the aged heart reflects abnormalities in cardiomyocyte Ca2+ homeostasis including altered Ca2+ cycling through the sarcoplasmic reticulum (SR). The ryanodine receptor antagonist dantrolene exerts antiarrhythmic effects by preventing spontaneous diastolic Ca2+ release from the SR. We tested the hypothesis that dantrolene prevents spontaneous Ca2+ release without altering excitation-contraction coupling in aged myocardium. Left ventricular cardiomyocytes isolated from young (3 to 4 mo) and aged (24-26 mo) C57BL/6 mice were loaded with the Ca2+ indicator fluo-4. Amplitudes of action potential-induced Ca2+ transients at 1-Hz pacing were similar between young and aged mice, yet cell shortening was impaired in aged mice. Isoproterenol (1 mu M) increased Ca2+ transient amplitude and cell shortening to identical levels in young and aged; dantrolene (1 mu M) had no effect on Ca2+ transients or cell shortening during pacing. Under Ca2+ overload conditions induced with 10 mM extracellular Ca2+ concentration, spontaneous Ca2+ waves were of diminished amplitude and associated with lower SR Ca2+ content in aged versus young mice. Despite no effect in young mice, dantrolene increased SR Ca2+ content and Ca2+ wave amplitude in aged mice. In the presence of isoproterenol following rest from 1-Hz pacing, Ca2+ spark frequency was elevated in aged mice, yet the time to spontaneous Ca2+ wave was similar between young and aged mice; dantrolene decreased Ca2+ spark frequency and prolonged the time to Ca2+ wave onset in aged mice with no effect in young mice. Thus dantrolene attenuates diastolic Ca2+ release in the aged murine heart that may prove useful in preventing cardiac dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available