4.6 Article

Automated analysis of contractile force and Ca2+ transients in engineered heart tissue

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00705.2013

Keywords

cardiac tissue engineering; contractile analysis; Ca2+ transient; hiPSC

Funding

  1. German Research Foundation [DFG Es 88/12-1, Mo 2217/1-1]
  2. German Ministry of Research and Education (DZHK, German Centre for Cardiovascular Research)
  3. European Commission [01GM1305]
  4. Deutsche Herzstiftung [F/13/10]

Ask authors/readers for more resources

Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca2+ concentration. The analysis of contractile function and Ca2+ transients is therefore important to discriminate between myofilament responsiveness and changes in Ca2+ homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca2+ transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca2+ and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca2+ concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca2+ (EC50: 0.15, 0.39, and 1.05 mM Ca2+ in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca2+ sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca2+ concentration is due to changes in Ca2+ handling proteins. Finally, this study confirms that fura-2 has Ca2+ buffering effects and is thereby changing the force response to extracellular Ca2+.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available