4.7 Article

Methamphetamine-elicited alterations of dopamine- and serotonin-metabolite levels within μ-opioid receptor knockout mice:: a microdialysis study

Journal

JOURNAL OF BIOMEDICAL SCIENCE
Volume 15, Issue 3, Pages 391-403

Publisher

BMC
DOI: 10.1007/s11373-007-9218-7

Keywords

methamphetamine; mu-opioid receptor; dopamine and serotonin metabolites; striatum; microdialysis

Funding

  1. NCRR NIH HHS [RR-P20 RRL7701] Funding Source: Medline

Ask authors/readers for more resources

mu-Opioid receptors (mu-ORs) modulate methamphetamine (MA)-induced behavioral responses, increased locomotor activity and stereotyped behavior in the mouse model. We investigated the changes in dopamine (DA) and serotonin (5-HT) metabolism in the striatum following either acute or repeated MA treatment using in vivo microdialysis. We also studied the role of mu-ORs in the modulation of MA-induced DA and 5-HT metabolism within mu-OR knockout mice. Subsequent to either acute or repeated intraperitoneal administration of MA, wild-type mice revealed decreases in extracellular concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in a dose-dependent manner. Moreover, wild-type mice had reductions in basal concentrations of DOPAC and HVA following repeated MA treatment with a higher dose. The effects of acute, repeated or challenge MA administration upon extracellular levels of DOPAC and HVA within mu-OR knockout mice significantly differed from the wild-type controls. The duration of recovery to the basal levels of extracellular DA and 5-HT metabolites induced by MA were much longer in wild-type mice than for mu-OR knockout mice. These findings suggest that mu-ORs play a modulatory role in MA-induced DA and 5-HT metabolism in the mouse striatum. This possible mechanism of MA-induced behavioral change as modulated by mu-OR merits further study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available