4.6 Article

Myosin head orientation: a structural determinant for the Frank-Starling relationship

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01221.2010

Keywords

length-dependent activation; myofilament lattice spacing

Funding

  1. National Heart, Lung, and Blood Institute [HL-75494]
  2. U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38]

Ask authors/readers for more resources

Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, de Tombe PP. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol Heart Circ Physiol 300: H2155-H2160, 2011. First published April 1, 2011; doi: 10.1152/ajpheart.01221.2010.-The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I(1,1)/I(1,0) intensity ratio decreases, whereas the M3 meridional reflection intensity (I(M3)) increases, concomitant with increases in diastolic and systolic force. Using a short (similar to 10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailed structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by I(M3)) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available