4.6 Article

Knockout of insulin receptors in cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01200.2009

Keywords

nitric oxide; blood vessel; mice; cardiac hypertrophy; endothelium-dependent vasorelaxation

Funding

  1. American Heart Association (AHA), Western States Affiliate
  2. American Physiological Society
  3. University of Utah
  4. National Heart, Lung, and Blood Institute (NHLBI) [RO1 HL-070070, UO1 HL-087947, R15 HL-091493-01]
  5. Western States Affiliate [06-55222Y]
  6. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [U01HL087947, R01HL070070, R15HL091493] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK092065] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Symons JD, Hu P, Yang Y, Wang X, Zhang QJ, Wende AR, Sloan CL, Sena S, Abel ED, Litwin SE. Knockout of insulin receptors in cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload. Am J Physiol Heart Circ Physiol 300: H374-H381, 2011. First published October 22, 2010; doi: 10.1152/ajpheart.01200.2009.-Ablating insulin receptors in cardiomyocytes causes subendocardial fibrosis and left ventricular (LV) dysfunction after 4 wk of transverse aortic constriction (TAC). To determine whether these maladaptive responses are precipitated by coronary vascular dysfunction, we studied mice with cardiomyocyte-restricted knock out of insulin receptors (CIRKO) and wild-type (WT) TAC mice before the onset of overt LV dysfunction. Two weeks of TAC produced comparable increases (P < 0.05 vs. respective sham) in heart weight/body weight (mg/g) in WT-TAC (8.03 +/- 1.14, P < 0.05 vs. respective sham) and CIRKO-TAC (7.76 +/- 1.25, P < 0.05 vs. respective sham) vs. WT-sham (5.64 +/- 0.11) and CIRKO-sham (4.64 +/- 0.10) mice. In addition, 2 wk of TAC were associated with similar LV geometry and function (echocardiography) and interstitial fibrosis (picrosirius red staining) in CIRKO and WT mice. Responses to acetylcholine (ACh), N-G-monomethyl-L-arginine (L-NMMA), and sodium nitroprusside (SNP) were measured in coronary arteries that were precontracted to achieve similar to 70% of maximal tension development using the thromboxane A(2) receptor mimetic U-46619 (similar to 3 x 10(-6) M). ACh-evoked vasorelaxation was absent in WT-TAC but was present in CIRKO-TAC albeit reduced relative to sham-operated animals. L-NMMA-evoked tension development was similar in vessels from CIRKO-TAC mice but was lower (P < 0.05) in WT-TAC animals vs. the respective sham-operated groups, and SNP-evoked vasorelaxation was similar among all mice. Thus estimates of stimulated and basal endothelial nitric oxide release were better preserved in CIRKO vs. WT mice in response to 2 wk of TAC. These findings indicate that maladaptive LV remodeling previously observed in CIRKO-TAC mice is not precipitated by coronary artery dysfunction, because CIRKO mice exhibit compensatory mechanisms (e.g., increased eNOS transcript and protein) to maintain coronary endothelial function in the setting of pressure overload.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available