4.6 Article

Quantification of presystolic blood flow organization and energetics in the human left ventricle

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00993.2010

Keywords

phase-contrast magnetic resonance imaging; kinetic energy; heart; cardiac physiology

Funding

  1. Swedish Research Council
  2. Swedish Heart-Lung Foundation
  3. Emil and Wera Cornell Foundation

Ask authors/readers for more resources

Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhall CJ. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol 300: H2135-H2141, 2011. First published March 18, 2011; doi: 10.1152/ajpheart.00993.2010.-Intracardiac blood flow patterns are potentially important to cardiac pumping efficiency. However, these complex flow patterns remain incompletely characterized both in health and disease. We hypothesized that normal left ventricular (LV) blood flow patterns would preferentially optimize a portion of the end-diastolic volume (LVEDV) for effective and rapid systolic ejection by virtue of location near and motion towards the LV outflow tract (LVOT). Three-dimensional cine velocity and morphological data were acquired in 12 healthy persons and 1 patient with dilated cardiomyopathy using MRI. A previously validated method was used for analysis in which the LVEDV was separated into four functional flow components based on the blood's locations at the beginning and end of the cardiac cycle. Each component's volume, kinetic energy (KE), site, direction, and linear momentum relative to the LVOT were calculated. Of the four components, the LV inflow that passes directly to outflow in a single cardiac cycle (Direct Flow) had the largest volume. At the time of isovolumic contraction, Direct Flow had the greatest amount of KE and the most favorable combination of distance, angle, and linear momentum relative to the LVOT. Atrial contraction boosted the late diastolic KE of the ejected components. We conclude that normal diastolic LV flow creates favorable conditions for ensuing ejection, defined by proximity and energetics, for the Direct Flow, and that atrial contraction augments the end-diastolic KE of the ejection volume. The correlation of Direct Flow characteristics with ejection efficiency might be a relevant investigative target in cardiac failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available