4.6 Article

Elevated systemic TGF-β impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE-/- mice

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01042.2009

Keywords

aorta; oxidative stress; nicotinamide adenine dinucleotide phosphate; transforming growth factor-beta; apolipoprotein E-deficient mice

Funding

  1. OTKA, Budapest, Hungary [T049022, NF69278, K 81972, ETT 07-011/2009]
  2. EFSD/Servier
  3. TAMOP [4.2.2/KMR-2008-004]
  4. Hungarian Ministry of Education [OM: BO/00351/06]
  5. [NKTH-OMFB-00770/2009]

Ask authors/readers for more resources

Buday A, Orsy P, Godo M, Mozes M, Kokeny G, Lacza Z, Koller A, Ungvari Z, Gross ML, Benyo Z, Hamar P. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(-/-) mice. Am J Physiol Heart Circ Physiol 299: H386-H395, 2010. First published May 28, 2010; doi:10.1152/ajpheart.01042.2009.-The role of circulating, systemic TGF-beta levels in endothelial function is not clear. TGF-beta(1) may cause endothelial dysfunction in apolipoprotein E-deficient (apoE(-/)-)mice via stimulation of reactive oxygen species (ROS) production by the NADPH oxidase (NOX) system and aggravate aortic and heart remodeling and hypertension. Thoracic aorta (TA) were isolated from 4-mo-old control (C57Bl/6), apoE(-/-), TGF-beta(1)-overexpressing (TGF beta(1)), and crossbred apoE(-/-) x TGF beta(1) mice. Endothelium-dependent relaxation was measured before and after incubation with apocynin (NOX inhibitor) or superoxide dismutase (SOD; ROS scavenger). Superoxide production within the vessel wall was determined by dihydroethidine staining under confocal microscope. In 8-mo-old mice, aortic and myocardial morphometric changes, plaque formation by en face fat staining, and blood pressure were determined. Serum TGF-beta(1) levels (ELISA) were elevated in TGF beta(1) mice without downregulation of TGF-beta-I receptor (immunohistochemistry). In the aortic wall, superoxide production was enhanced and NO-dependent relaxation diminished in apoE(-/-) x TGF beta(1) mice but improved significantly after apocynin or SOD. Myocardial capillary density was reduced, fibrocyte density increased, aortic wall was thicker, combined lesion area was greater, and blood pressure was higher in the apoE(-/-) x TGF beta vs. C57Bl/6 mice. Our results demonstrate that elevated circulating TGF-beta(1) causes endothelial dysfunction through NOX activation-induced oxidative stress, accelerating atherosclerosis and hypertension in apoE(-/-) mice. These findings may provide a mechanism explaining accelerated atherosclerosis in patients with elevated plasma TGF beta(1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available