4.6 Article

T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00528.2009

Keywords

low-voltage-activated calcium channel; oxidative stress; cardiomyocytes

Funding

  1. Falk Fellowship Foundation (Cardiovascular Institute, Loyola University of Chicago)
  2. National Heart, Lung, and Blood Institute [R01 HL075115]

Ask authors/readers for more resources

Pluteanu F, Cribbs LL. T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 297: H1304-H1313, 2009. First published August 7, 2009; doi: 10.1152/ajpheart.00528.2009.-Low-voltage-activated calcium channels are reexpressed in ventricular myocytes in pathological conditions associated with hypoxic episodes, but a direct relation between oxidative stress and T-type channel function and regulation in cardiomyocytes has not been established. We aimed to investigate low-voltage-activated channel regulation under oxidative stress in neonatal rat ventricular myocytes. RT-PCR measurements of voltage-gated Ca2+ (Ca-v)3.1 and Ca(v)3.2 mRNA levels in oxidative stress were compared with whole cell patch-clamp recordings of T-type calcium current. The results indicate that hypoxia reduces T-type current density at -30 mV (the hallmark of this channel) based on the shift of the voltage dependence of activation to more depolarized values and downregulation of Ca(v)3.1 at the mRNA level. Upon reoxygenation, both Ca(v)3.1 mRNA levels and the voltage dependence of total T-type current are restored, although differently for activation and inactivation. Using Ni2+, we distinguished different effects of hypoxia/reoxygenation on the two current components. Long-term incubation in the presence of 100 mu M CoCl2 reproduced the effects of hypoxia on T-type current activation and inactivation, indicating that the chemically induced oxidative state is sufficient to alter T-type calcium current activity, and that hypoxia-inducible factor-1 alpha is involved in Ca(v)3.1 downregulation. Our results demonstrate that Ca(v)3.1 and Ca(v)3.2 T-type calcium channels are differentially regulated by hypoxia/reoxygenation injury, and, therefore, they may serve different functions in the myocyte in response to hypoxic injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available