4.6 Article

Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01173.2008

Keywords

collagen; cross-linking; remodeling; hydrothermal isometric tension

Ask authors/readers for more resources

Aldous IG, Veres SP, Jahangir A, Lee JM. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am J Physiol Heart Circ Physiol 296: H1898-H1906, 2009. First published March 27, 2009; doi:10.1152/ajpheart.01173.2008.-Hydrothermal isometric tension (HIT) testing and high-performance liquid chromatography were used to assess the molecular stability and cross-link population of collagen in the four valves of the adult bovine heart. Untreated and NaBH(4)-treated tissues under isometric tension were heated in a water bath to a 90 degrees C isotherm that was sustained for 5 h. The denaturation temperature (T(d)), associated with hydrogen bond rupture and molecular stability, and the half-time of load decay (t(1/2)), associated with peptide bond hydrolysis and intermolecular cross-linking, were calculated from acquired load/temperature/time data. An unpaired group of samples of the same population was biochemically assayed for the types and quantities of enzymatic cross-links present. Tissues known to endure higher in vivo transvalvular pressures had lower T(d) values, suggesting that molecular stability is inversely related to in vivo loading. The treated inflow valves (mitral and tricuspid) had significantly lower t(1/2) values than did treated outflow valves (aortic and pulmonary), suggesting lower overall cross-linking in the inflow valves. Inflow valves were also found to fail during HIT testing significantly more often than outflow valves, also suggestive of a decreased cross-link population. Inflow valves may be remodeling at a faster rate and may be at an earlier state of molecular maturity than outflow valves. At the molecular level, the thermal stability of collagen is associated with in vivo loading and may be influenced by the mature, aldimine-derived cross-link, histidinohydroxylysinonorleucine. We conclude that the valves of the heart utilize differing, location-specific strategies to resist biomechanical fatigue loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available