4.6 Article

Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00047.2012

Keywords

visceral afferent; stretch; colorectum; pain

Funding

  1. National Health and Medical Research Council of Australia Grant [1025766]

Ask authors/readers for more resources

Zagorodnyuk VP, Kyloh M, Brookes SJ, Nicholas SJ, Spencer NJ. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon. Am J Physiol Gastrointest Liver Physiol 303: G404-G411, 2012. First published May 24, 2012; doi:10.1152/ajpgi.00047.2012.-The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 +/- 0.23 Hz (n = 8) under isotonic conditions and 2.52 +/- 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 mu M). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naive mouse colorectum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available