4.6 Article

Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00423.2009

Keywords

exocrine pancreatic acini; endoplasmic reticulum stress; chemical chaperone; TUDCA

Funding

  1. University of Munich [538]
  2. Deutscheforschungsgemeinschaft [KU 2617/1-1]

Ask authors/readers for more resources

Endoplasmic reticulum (ER) stress leads to accumulation of un- or misfolded proteins inside the ER and initiates the unfolded protein response (UPR). Several UPR components are physiologically involved in pancreatic development and are pathophysiologically activated during acute pancreatitis. However, the exact role of ER stress in exocrine pancreatic acini is mainly unclear. The present study examined the effects of tauroursodeoxycholic acid (TUDCA), a known ER chaperone, on acinar function and UPR components. Isolated rat pancreatic acini were stimulated by increasing concentrations of cholecystokinin (CCK-8) with or without preincubation of TUDCA. UPR components were analyzed, including chaperone binding protein (BiP), protein kinase-like ER kinase (PERK), X-box binding protein (XBP)-1, c-Jun NH2-terminal kinase (JNK), CCAAT/enhancer binding protein homologues protein (CHOP), caspase 3 activation, and apoptosis. In addition, TUDCA effects were measured on amylase secretion, calcium signaling, trypsin, and cathepsin B activation. TUDCA preincubation led to a significant increase in amylase secretion after CCK-8 stimulation, a 50% reduction of intracellular trypsin activation, and reduced cathepsin B activity, although the effects for cathepsin B were not statistical significant. Furthermore, TUDCA prevented the CCK-8-induced BiP upregulation, diminished PERK and JNK phosphorylation, and prohibited the expression of CHOP, caspase 3 activation and apoptosis. XBP-1 splicing was not altered. ER stress response mechanisms are activated in pancreatic inflammation. Chemical chaperones enhance enzyme secretion of pancreatic acini, reduce ER stress responses, and attenuate ER stress-associated apoptosis. These data hint new perspectives for an employment of chemical chaperones in the therapy of acute pancreatitis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available