4.6 Article

Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.90524.2008

Keywords

choleresis; hepatocellular transporter; glucuronidation

Funding

  1. Korea government (MEST) [R11-2007-10701001-0]
  2. National Research Foundation of Korea [핵06B3306, 2007-0056819] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Kim YW, Kang HE, Lee MG, Hwang SJ, Kim SC, Lee CH, Kim SG. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes. Am J Physiol Gastrointest Liver Physiol 296: G372-G381, 2009. First published December 12, 2008; doi:10.1152/ajpgi.90524.2008.-Liquiritigenin (LQ), an active component of licorice, has an inhibitory effect on LPS-induced inhibitory nitric oxide synthase expression. This study investigated the effects of LQ on choleresis, the expression of hepatic transporters and phase-II enzymes, and fulminant hepatitis. The choleretic effect and the pharmacokinetics of LQ and its glucuronides were monitored in rats. After intravenous administration of LQ, the total area under the plasma concentration-time curve of glucuronyl metabolites was greater than that of LQ in plasma, which accompanied elevations in bile flow rate and biliary excretion of bile acid, glutathione, and bilirubin. The expressions of hepatocellular transporters and phase-II enzymes were assessed by immunoblots, real-time PCR, and immunohistochemistry. In the livers of rats treated with LQ, the protein and mRNA levels of multidrug resistance protein 2 and bile salt export pump were increased in the liver, which was verified by their increased localizations in canalicular membrane. In addition, LQ treatment enhanced the expression levels of major hepatic phase-II enzymes. Consistent with these results, LQ treatments attenuated galactosamine/LPS-induced hepatitis in rats, as supported by decreases in the plasma alanine aminotransferase, liver necrosis, and plasma TNF-alpha. These results demonstrate that LQ has a choleretic effect and the ability to induce transporters and phase-II enzymes in the liver, which may be associated with a hepatoprotective effect against galactosamine/LPS. Our findings may provide insight into understanding the action of LQ and its therapeutic use for liver disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available