4.6 Article

Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.90605.2008

Keywords

intracellular alkalinization; mucus secretion; bicarbonate secretion; monosodium glutamate; taste receptor

Funding

  1. Ajinomoto, Japan
  2. Department of Veterans Affairs Merit Review Award, NIH-NIDDK [R01 DK54221, P30 DK0413]

Ask authors/readers for more resources

Akiba Y, Watanabe C, Mizumori M, Kaunitz JD. Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am J Physiol Gastrointest Liver Physiol 297: G781-G791, 2009. First published July 30, 2009; doi: 10.1152/ajpgi.90605.2008.-Presence of taste receptor families in the gastrointestinal mucosa suggests a physiological basis for local and early detection of a meal. We hypothesized that luminal L-glutamate, which is the primary nutrient conferring fundamental umami or proteinaceous taste, influences mucosal defense mechanisms in rat duodenum. We perfused the duodenal mucosa of anesthetized rats with L-glutamate (0.1-10 mM). Intracellular pH (pH(i)) of the epithelial cells, blood flow, and mucus gel thickness (MGT) were simultaneously and continuously measured in vivo. Some rats were pretreated with indomethacin or capsaicin. Duodenal bicarbonate secretion (DBS) was measured with flow-through pH and CO(2) electrodes. We tested the effects of agonists or antagonists for metabotropic glutamate receptor (mGluR) 1 or 4 or calcium-sensing receptor (CaSR) on defense factors. Luminal L-glutamate dose dependently increased pHi and MGT but had no effect on blood flow in the duodenum. L-glutamate (10 mM)-induced cellular alkalinization and mucus secretion were inhibited by pretreatment with indomethacin or capsaicin. L-glutamate effects on pH(i) and MGT were mimicked by mGluR4 agonists and inhibited by an mGluR4 antagonist. CaSR agonists acidified cells with increased MGT and DBS, unlike L-glutamate. Perfusion of L-glutamate with inosinate (inosine 5'-monophosphate, 0.1 mM) enhanced DBS only in combination, suggesting synergistic activation of the L-glutamate receptor, typical of taste receptor type 1. L-leucine or L-aspartate had similar effects on DBS without any effect on pHi and MGT. Preperfusion of L-glutamate prevented acid-induced cellular injury, suggesting that L-glutamate protects the mucosa by enhancing mucosal defenses. Luminal L-glutamate may activate multiple receptors and afferent nerves and locally enhance mucosal defenses to prevent subsequent injury attributable to acid exposure in the duodenum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available