4.6 Article

Purinergic and nitrergic junction potential in the human colon

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00510.2007

Keywords

ATP; IJP; smooth muscle; rundown; purinergic receptors

Funding

  1. Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd) Instituto de Salud Carlos III
  2. Ministerio de Educacio n y Ciencia (MEC) [BFU2006-05055/BFI]

Ask authors/readers for more resources

The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 mu M), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 mu M), was able to cause a sustained relaxation. N-G-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy- N-6- methyl adenosine 3', 5'-diphosphate tetraammonium salt (MRS 2179) (10 mu M), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 mu M). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 mu M), MRS 2179 (1 mu M), and NF023 (10 mu M). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available