4.7 Article

A comparison of address point, parcel and street geocoding techniques

Journal

COMPUTERS ENVIRONMENT AND URBAN SYSTEMS
Volume 32, Issue 3, Pages 214-232

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compenvurbsys.2007.11.006

Keywords

geocoding; reference data; address models; address points; parcels

Ask authors/readers for more resources

The widespread availability of powerful geocoding tools in commercial GIS software and the interest in spatial analysis at the individual level have made address geocoding a widely employed technique in many different fields. The most commonly used approach to geocoding employs a street network data model, in which addresses are placed along a street segment based on a linear interpolation of the location of the street number within an address range. Several alternatives have emerged, including the use of address points and parcels, but these have not received widespread attention in the literature. This paper reviews the foundation of geocoding and presents a framework for evaluating geocoding quality based on completeness, positional accuracy and repeatability. Geocoding quality was compared using three address data models: address points, parcels and street networks. The empirical evaluation employed a variety of different address databases for three different Counties in Florida. Results indicate that address point geocoding produces geocoding match rates similar to those observed for street network geocoding. Parcel geocoding generally produces much lower match rates, in particular for commercial and multi-family residential addresses. Variability in geocoding match rates between address databases and between geographic areas is substantial, reinforcing the need to strengthen the development of standards for address reference data and improved address data entry validation procedures. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available