4.6 Article

The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00075.2012

Keywords

thioredoxin; protein nitration; receptor for advanced glycation end products

Funding

  1. National Natural Science Foundation of China [81070676, 81170186, 30700255]
  2. National 863 Project of China Grant [2009AA02Z104]
  3. Subject Boosting Project of Xijing Hospital Grant [XJZT08Z02]

Ask authors/readers for more resources

Liu Y, Qu Y, Wang R, Ma Y, Xia C, Gao C, Liu J, Lian K, Xu A, Lu X, Sun L, Yang L, Lau WB, Gao E, Koch W, Wang H, Tao L. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 303: E841-E852, 2012. First published July 24, 2012; doi:10.1152/ajpendo.00075.2012.-The receptor for advanced glycation end products (RAGE) and thioredoxin (Trx) play opposing roles in diabetic myocardial ischemia-reperfusion (MI/R) injury. We recently demonstrated nitrative modification of Trx leads to its inactivation and loss of cardioprotection. The present study is to determine the relationship between augmented RAGE expression and diminished Trx activity pertaining to exacerbated MI/R injury in the diabetic heart. The diabetic state was induced in mice by multiple intraperitoneal low-dose streptozotocin injections. RAGE small-interfering RNA (siRNA) or soluble RAGE (sRAGE, a RAGE decoy) was via intramyocardial and intraperitoneal injection before MI/R, respectively. Mice were subjected to 30 min of myocardial infarction followed by 3 or 24 h of reperfusion. At 10 min before reperfusion, diabetic mice were randomized to receive EUK134 (peroxynitrite scavenger), recombinant hTrx-1, nitrated Trx-1, apocynin (a NADPH oxidase inhibitor), or 1400W [an inducible nitric oxide synthase (iNOS) inhibitor] administration. The diabetic heart manifested increased RAGE expression and N-e-(carboxymethyl) lysine (CML, major advanced glycation end product subtype) content, reduced Trx-1 activity, and increased Trx nitration after MI/R. RAGE siRNA or administration of sRAGE in diabetic mice decreased MI/R-induced iNOS and gp91(phox) expression, reduced Trx nitration, preserved Trx activity, and decreased infarct size. Apocynin or 1400W significantly decreased nitrotyrosine production and restored Trx activity. Conversely, administration of either EUK134 or reduced hTrx, but not nitrated hTrx, attenuated MI/R-induced superoxide production, RAGE expression, and CML content and decreased cardiomyocyte apoptosis in diabetic mice. Collectively, we demonstrate that RAGE modulates the MI/R injury in a Trx nitrative inactivation fashion. Conversely, nitrative modification of Trx blocked its inhibitory effect upon RAGE expression in the diabetic heart. This is the first direct evidence demonstrating the alternative cross talk between RAGE overexpression and nitrative Trx inactivation, suggesting that interventions interfering with their interaction may be novel means of mitigating diabetic MI/R injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available