4.8 Article

Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells

Journal

ONCOGENE
Volume 27, Issue 21, Pages 3032-3044

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1210962

Keywords

chemotherapeutics; cyclooxygenase-2; lipocalin-type prostaglandin D synthase; prostaglandins; peroxisome proliferator-activated receptor gamma; apoptosis

Ask authors/readers for more resources

The role of cyclooxygenase-2 (COX-2) in cancer remains controversial. Using cervical carcinoma cells (HeLa), the present study investigates the involvement of COX-2 in apoptosis elicited by the chemotherapeutics paclitaxel, cisplatin and 5-fluorouracil. Each compound led to a profound induction of COX-2 expression and prostaglandin (PG) synthesis, accompanied by a substantial decrease of viability and enhanced apoptosis. Cells were significantly less sensitive to apoptotic death when either COX-2 expression or its activity was suppressed by smallinterfering RNA (siRNA) and by the selective COX-2 inhibitor NS-398, respectively. Experiments performed to clarify how COX-2 leads to apoptosis revealed a profound proapoptotic action of PGD2 and its dehydration product, 15-deoxy- D12,14 PGJ2 (15d-PGJ2). In line with these findings, chemotherapeutics-induced apoptosis was prevented by siRNA targeting lipocalin-type PGD synthase (L-PGDS), which catalyses the isomerization of PGH2 to PGD2. Moreover, apoptosis by chemotherapeutics, PGD2 and 15d-PGJ2 was suppressed by the peroxisome proliferator-activated receptor c (PPARc) antagonist, GW-9662 or PPARc siRNA. Finally, a COX-2-dependent apoptotic mechanism of all investigated chemotherapeutics was confirmed in human lung cancer cells (A549) as well as in another cervical carcinoma cell line (C33A). Collectively, this study suggests COX-2 induction and synthesis of L-PGDS-derived, PPARc-activating PGs as a decisive target by which several chemotherapeutics induce apoptosis. COX-2 is therefore suspected to sensitize cancer cells to apoptotic death under certain circumstances, suggesting that COX-2 inhibition during cancer therapy could diminish its efficacy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available