4.6 Article

Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00578.2007

Keywords

hydrogen peroxide; glucose transport; type 2 diabetes

Funding

  1. NIDDK NIH HHS [DK-063967] Funding Source: Medline

Ask authors/readers for more resources

Oxidative stress can contribute to the multifactorial etiology of whole body and skeletal muscle insulin resistance. No investigation has directly assessed the effect of an in vitro oxidant stress on insulin action in intact mammalian skeletal muscle. Therefore, the purpose of the present study was to characterize the molecular actions of a low-grade oxidant stress (H2O2) on insulin signaling and glucose transport in isolated skeletal muscle of lean Zucker rats. Soleus strips were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase, which produces H2O2 at similar to 90 mu M. By itself, H2O2 significantly (P < 0.05) activated basal glucose transport activity, net glycogen synthesis, and glycogen synthase activity and increased phosphorylation of insulin receptor (Tyr), Akt (Ser(473)), and GSK-3 beta (Ser(9)). In contrast, this oxidant stress significantly inhibited the expected insulin-mediated enhancements in glucose transport, glycogen synthesis, and these signaling factors and allowed GSK-3 beta to retain a more active form. In the presence of CT-98014, a selective GSK-3 inhibitor, the ability of insulin to stimulate glucose transport and glycogen synthesis during exposure to this oxidant stress was enhanced by 20% and 39% (P < 0.05), respectively, and insulin stimulation of the phosphorylation of insulin receptor, Akt, and GSK-3 was significantly increased by 36 -58% (P < 0.05). These results indicate that an oxidant stress can directly and rapidly induce substantial insulin resistance of skeletal muscle insulin signaling, glucose transport, and glycogen synthesis. Moreover, a small, but significant, portion of this oxidative stress-induced insulin resistance is associated with a reduced insulin-mediated suppression of the active form of GSK-3 beta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available