4.6 Article

Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00047.2008

Keywords

antenatal glucocorticoids; pregnancy; programming; insulin-like growth factor-binding protein

Ask authors/readers for more resources

Exposure to synthetic glucocorticoids in utero markedly improves survival after preterm birth, but repeated exposures impair fetal and postnatal growth and are associated with evidence of insulin resistance in later life. The insulin-like growth factor (IGF) axis is an important regulator of growth and metabolism before and after birth. We have therefore investigated the effects of repeated maternal betamethasone injections on plasma IGF-I, IGF-II, and IGF-binding proteins (IGFBP) in fetal and postnatal progeny in the sheep. Pregnant sheep carrying male fetuses were injected with saline or betamethasone at 104, 111, and 118 days of gestation (dG, term similar to 150 dG). Plasma samples were collected postmortem from fetuses before (75, 84, 101 dG) or after one (109 dG), two (116 dG), or three (121-122, 132-133, 145-147 dG) doses of saline or betamethasone and from progeny at 42 and 84 days of age. Fetal weight was reduced after two or more maternal betamethasone injections, and this effect persisted to term. Repeated betamethasone exposures reduced plasma IGF-I and total IGFBP in fetuses at 133 dG and progeny at 84 days, and reduced plasma IGFBP-3 at 84 days. Fetal plasma IGF-II tended to increase transiently at 109 dG following the first betamethasone injection. Fetal, placental, and/or postnatal weights correlated positively with concomitant plasma IGF-I, IGF-II, and total IGFBP. We conclude that repeated exposure to synthetic glucocorticoids in utero programs the IGF axis before and after birth, which may contribute to the adverse effects of betamethasone exposure on growth and metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available