4.7 Article

Identifying protein kinase target preferences using mass spectrometry

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 303, Issue 7, Pages C715-C727

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00166.2012

Keywords

protein kinase A; Sgk1; SPAK; Wnk1; glycogen synthase kinase

Funding

  1. National Heart, Lung and Blood Institute [ZO1-HL001285]
  2. Center for Information Technology [CT000265-16]

Ask authors/readers for more resources

Douglass J, Gunaratne R, Bradford D, Saeed F, Hoffert JD, Steinbach PJ, Knepper MA, Pisitkun T. Identifying protein kinase target preferences using mass spectrometry. Am J Physiol Cell Physiol 303: C715-C727, 2012. First published June 20, 2012; doi:10.1152/ajpcell.00166.2012.-A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called PhosphoLogo, uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit alpha), revealing the well-known preference for basic amino acids in positions -2 and -3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKC delta, CaMK2 delta, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3 beta, Wnk1, and Wnk4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available