4.7 Article

Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 301, Issue 4, Pages C841-C849

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00409.2010

Keywords

knockout mouse; muscle contractility; isolated skeletal muscle; Ca2+ pump

Funding

  1. Heart and Stroke Foundation (HSF) Ontario [T-5042, T-6281]
  2. Canadian Institutes of Health Research [MOP 12545, MOP 86618, MOP 47296]
  3. TACTICS

Ask authors/readers for more resources

Tupling AR, Bombardier E, Gupta SC, Hussain D, Vigna C, Bloemberg D, Quadrilatero J, Trivieri MG, Babu GJ, Backx PH, Periasamy M, MacLennan DH, Gramolini AO. Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice. Am J Physiol Cell Physiol 301: C841-C849, 2011. First published June 22, 2011; doi: 10.1152/ajpcell.00409.2010.-Sarcolipin (SLN) inhibits sarco(endo) plasmic reticulum Ca2+-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca2+ regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca2+-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available