4.7 Article

Extracellular ATP dissociates nonmuscle myosin from P2X7 complex: this dissociation regulates P2X7 pore formation

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 297, Issue 2, Pages C430-C439

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00079.2009

Keywords

short hairpin RNA; blebbistatin; THP-1 cells; fluorescent resonance energy transfer; ethidium uptake; myosin IIA; myosin Va; phagocytosis

Funding

  1. Cure Cancer Australia Foundation
  2. Leukemia Foundation of Australia
  3. University of Sydney

Ask authors/readers for more resources

Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS. Extracellular ATP dissociates nonmuscle myosin from P2X(7) complex: this dissociation regulates P2X(7) pore formation. Am J Physiol Cell Physiol 297: C430-C439, 2009. First published June 3, 2009; doi: 10.1152/ajpcell.00079.2009.-The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on monocyte-macrophages and that mediates the pro-inflammatory effects of extracellular ATP. Dilation of the P2X(7) channel and massive K+ efflux follows initial channel opening, but the mechanism of secondary pore formation is unclear. The proteins associated with P2X(7) were isolated by using anti-P2X(7) monoclonal antibody-coated Dynabeads from both interferon-gamma plus LPS-stimulated monocytic THP-1 cells and P2X(7)-transfected HEK-293 cells. Two nonmuscle myosins, NMMHC-IIA and myosin Va, were found to associate with P2X(7) in THP-1 cells and HEK-293 cells, respectively. Activation of the P2X(7) receptor by ATP caused dissociation of P2X(7) from nonmuscle myosin in both cell types. The interaction of P2X(7) and NMMHC-IIA molecules was confirmed by fluorescent life time measurements and fluorescent resonance of energy transfer-based time-resolved flow cytometry assay. Reducing the expression of NMMHC-IIA or myosin Va by small interfering RNA or short hairpin RNA led to a significant increase of P2X(7) pore function without any increase in surface expression or ion channel function of P2X(7) receptors. S-l-blebbistatin, a specific inhibitor of NMMHC-IIA ATPase, inhibited both ATP-induced ethidium uptake and ATP-induced dissociation of P2X(7)-NMMHC-IIA complex. In both cell types nonmuscle myosin closely interacts with P2X(7) and is dissociated from the complex by extracellular ATP. Dissociation of this anchoring protein may be required for the transition of P2X(7) channel to a pore.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available