4.7 Article

Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 296, Issue 5, Pages C1178-C1184

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00291.2008

Keywords

A(2) receptors; Epac; phosphoinositol-3 kinase; cardiac collagen deposition

Funding

  1. National Heart, Lung, and Blood Institute [HL-43617, HL-67922]
  2. NIH [07444, GM-68524]

Ask authors/readers for more resources

Villarreal F, Epperson SA, Ramirez-Sanchez I, Yamazaki KG, Brunton LL. Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am J Physiol Heart Circ Physiol 296: C1178-C1184, 2009. First published March 11, 2009; doi:10.1152/ajpcell.00291.2008.-Rat cardiac fibroblasts (CF) express multiple adenosine (ADO) receptors. Pharmacological evidence suggests that activation of A(2) receptors may inhibit collagen synthesis via adenylyl cyclase-induced elevation of cellular cAMP. We have characterized the signaling pathways involved in ADO-mediated inhibition of collagen synthesis in primary cultures of adult rat CF. ANG II stimulates collagen production in these cells. Coincubation with agents that elevate cellular cAMP [the ADO agonist, 5'-N-ethylcarboxamidoadensoine (NECA), and forskolin] inhibited the stimulatory effects of ANG II. However, direct stimulators and inhibitors of protein kinase A (PKA) did not alter ANG II-induced collagen synthesis, indicating that PKA does not mediate the inhibitory effects of NECA. Inhibitors of AMP-kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) do not alter NECA-inhibited collagen synthesis. However, activation of exchange factor directly activated by cAMP (Epac) mimicked the effects of NECA on ANG II-stimulated collagen synthesis. Inhibition of phosphoinositol-3 kinase (PI3K) reduced the inhibitory effects of NECA on ANG II-induced collagen synthesis, suggesting that NECA acts via PI3K. Furthermore, inhibition of PI3K also relieved the inhibitory effect of Epac activation on ANG II-stimulated collagen synthesis. Thus it appears that ADO activates the A(2)R-G(s)-adenylyl cyclase pathway and that the resultant cAMP reduces collagen synthesis via a PKA-independent, Epac-dependent pathway that feeds through PI3K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available