4.7 Article

Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1164/rccm.201501-0168OC

Keywords

exome sequencing chronic lung disease; bronchopulmonary dysplasia; genetic predisposition to disease; premature

Funding

  1. Ranting Postdoctoral Fellowship
  2. Winston Chen Stanford Graduate Fellowship
  3. National Institutes of Health [5U01HL10739304, 1P50HG00773501, 5P50HG00773502]
  4. National Institutes of Health/NHLBI grant [RC2 HL101748]

Ask authors/readers for more resources

Rationale: Bronchopulmonary dysplasia (BPD), a prevalent severe lung disease of premature infants, has a strong genetic component. Large-scale genome-wide association studies for common variants have not revealed its genetic basis. Objectives: Given the historical high mortality rate of extremely preterm infants who now survive and develop BPD, we hypothesized that risk loci underlying this disease are under severe purifying selection during evolution; thus, rare variants likely explain greater risk of the disease. Methods: We performed exome sequencing on 50 BPD-affected and unaffected twin pairs using DNA isolated from neonatal blood spots and identified genes affected by extremely rare nonsynonymous mutations. Functional genomic approaches were then used to systematically compare these affected genes. Measurements and Main Results: We identified 258 genes with rare nonsynonymous mutations in patients with BPD. These genes were highly enriched for processes involved in pulmonary structure and function including collagen fibril organization, morphogenesis of embryonic epithelium, and regulation of Wnt signaling pathway; displayed significantly elevated expression in fetal and adult lungs; and were substantially up-regulated in a murine model of BPD. Analyses of mouse mutants revealed their phenotypic enrichment for embryonic development and the cyanosis phenotype, a clinical manifestation of BPD. Conclusions: Our study supports the role of rare variants in BPD, in contrast with the role of common variants targeted by genome-wide association studies. Overall, our study is the first to sequence BPD exomes from newborn blood spot samples and identify with high confidence genes implicated in BPD, thereby providing important insights into its biology and molecular etiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available