4.3 Article

Encephalization, Expensive Tissues, and Energetics: An Examination of the Relative Costs of Brain Size in Strepsirrhines

Journal

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
Volume 143, Issue 4, Pages 579-590

Publisher

WILEY
DOI: 10.1002/ajpa.21354

Keywords

strepsirrhine; brain size; metabolic rate; intestinal size

Funding

  1. Duke University
  2. Molly H. Glander Memorial Undergraduate Research Grant
  3. Undergraduate Research Grant

Ask authors/readers for more resources

The evolution of encephalization requires that energetic challenges be met. Several hypotheses, such as the maternal energy and expensive tissue hypotheses, have been proposed to explain how some species are able to provide adequate energetic resources for large brains. The former incorporates maternal investment strategies, such as extended life history and elevated resting metabolic rate, which contribute to the growth of a large brain. The latter incorporates the reduction of gut size, which increases available energy for the maintenance of adult brain size. This study examines a sample of strepsirrhines, testing the hypothesis that encephalized species utilize some combination of the above-mentioned strategies. Infants and juveniles from three species at the Duke Lemur Center (DLC) were measured periodically to arrive at head and body growth trajectories. These data were used to determine the energetic tradeoff among the offspring. The examination of gestation length, weaning age, intestinal size and resting metabolic rate was used to assess adult brain maintenance and maternal energetic contribution. The results reveal that Daubentonia, the most encephalized and thus human-like of the lemurs, does not experience an energetic trade-off between brain and body during ontogeny, but does exhibit a trade-off between extensive brain growth and possibly reduced intestinal growth. Also, maternal energy is utilized. Encephalized lemurs, such as Daubentonia, have higher resting metabolic rate, while encephalized lorisiforms have a longer period of gestation. These results demonstrate that there are several strategies for meeting the energetic demands of encephalization, and they can be manifested differentially across taxa. Am J Phys Anthropol 143:579-590, 2010. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available