4.3 Article

High genetic diversity in the blue-listed British Columbia population of the purple martin maintained by multiple sources of immigrants

Journal

CONSERVATION GENETICS
Volume 9, Issue 3, Pages 495-505

Publisher

SPRINGER
DOI: 10.1007/s10592-007-9358-3

Keywords

genetic diversity; migrant-pool recolonization; blue-listed population; purple martin; nest box recovery

Ask authors/readers for more resources

To assess genetic diversity in the blue-listed purple martin (Progne subis) population in British Columbia, we analysed mitochondrial control region sequences of 93 individuals from British Columbia and 121 individuals collected from seven localities of the western and eastern North American subspecies P. s. arboricola and P. s. subis, respectively. Of the 47 haplotypes we detected, 34 were found exclusively in western populations, and 12 were found only in eastern populations. The most common eastern haplotype (25) was also found in three nestlings in British Columbia and one in Washington. Another British Columbia nestling had a haplotype (35) that differed by a C to T transition from haplotype 25. Coalescent analysis indicated that these five nestlings are probably descendents of recent immigrants dispersing from east to the west, because populations were estimated to have diverged about 200,000-400,000 ybp, making ancestral polymorphism a less likely explanation. Maximum likelihood estimates of gene flow among all populations detected asymmetrical gene flow into British Columbia not only of rare migrants from the eastern subspecies in Alberta but also a substantial number of migrants from the adjacent Washington population, and progressively lower numbers from Oregon in an isolation-by distance pattern. The influx of migrants from different populations is consistent with the migrant-pool model of recolonization which has maintained high genetic diversity in the small recovering population in British Columbia. Thus, the risk to this population is not from genetic erosion or inbreeding following a severe population crash, but from demographic stochasticity and extinction in small populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available