4.1 Article

Using a model to compute the optimal schedule of practice

Journal

JOURNAL OF EXPERIMENTAL PSYCHOLOGY-APPLIED
Volume 14, Issue 2, Pages 101-117

Publisher

AMER PSYCHOLOGICAL ASSOC
DOI: 10.1037/1076-898X.14.2.101

Keywords

memory; practice; paired-associate; efficiency; spacing effect

Funding

  1. NIMH NIH HHS [MH 62011] Funding Source: Medline
  2. PHS HHS [NIMH R01 MH 68234] Funding Source: Medline

Ask authors/readers for more resources

By balancing the spacing effect against the effects of recency and frequency, this paper explains how practice may be scheduled to maximize learning and retention. In an experiment, an optimized condition using an algorithm determined with this method was compared with other conditions. The optimized condition showed significant benefits with large effect sizes for both improved recall and recall latency. The optimization method achieved these benefits by using a modeling approach to develop a quantitative algorithm, which dynamically maximizes learning by determining for each item when the balance between increasing temporal spacing (that causes better long-term recall) and decreasing temporal spacing (that reduces the failure related time cost of each practice) means that the item is at the spacing interval where long-term gain per unit of practice time is maximal. As practice repetitions accumulate for each item, items become stable in memory and this optimal interval increases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available