4.6 Article

The Ubiquitin Ligase MuRF1 Protects Against Cardiac Ischemia/Reperfusion Injury by Its Proteasome-Dependent Degradation of Phospho-c-Jun

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 178, Issue 3, Pages 1043-1058

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajpath.2010.11.049

Keywords

-

Categories

Funding

  1. China Natural Science Foundation [81025001, 2006CB503801]
  2. Beijing high-level talents program [PHR20110507]
  3. American Heart Association
  4. National Heart, Lung, and Blood Institute [R01HL104129]

Ask authors/readers for more resources

Despite improvements in interventions of acute coronary syndromes, primary reperfusion therapies restoring blood flow to ischemic myocardium leads to the activation of signaling cascades that induce cardiomyocyte cell death. These signaling cascades, including the mitogen-activated protein kinase signaling pathways, activate cardiomyocyte death in response to both ischemia and reperfusion. We have previously identified muscle ring finger-1 (MuRF1) as a cardiac-specific protein that regulates cardiomyocyte mass through its ubiquitin ligase activity, acting to degrade sarcomeric proteins and inhibit transcription factors involved in cardiac hypertrophy signaling. To determine MuRF1's role in cardiac ischemia/reperfusion (I/R) injury, cardiomyocytes in culture and intact hearts were challenged with I/R injury in the presence and absence of MuRF1. We found that MuRF1 is cardioprotective, in part, by its ability to prevent cell death by inhibiting Jun N-terminal kinase (INK) signaling. MuRF1 specifically targets JNK's proximal downstream target, activated phospho-c-Jun, for degradation by the proteasome, effectively inhibiting downstream signaling and the induction of cell death. MuRF1's inhibitory affects on JNK signaling through its ubiquitin proteasome-dependent degradation of activated c-Jun is the first description of a cardiac ubiquitin ligase inhibiting mitogen-activated protein kinase signaling. MuRF1's cardioprotection in I/R injury is attenuated in the presence of pharmacologic JNK inhibition in vivo, suggesting a prominent role of MuRF1's regulation of c-Jun in the intact heart. (Am J Pathol 2011, 178:1043-1054. DOI: 10.1016/j.ajpath.2010.11.049)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available