4.6 Article

Renal Accumulation of Biglycan and Lipid Retention Accelerates Diabetic Nephropathy

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 179, Issue 3, Pages 1179-1187

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajpath.2011.05.016

Keywords

-

Categories

Funding

  1. Department of Veterans Affairs [BX000622]
  2. American Diabetes Association
  3. Order of the Amaranth
  4. National Institutes of Health [RR020171]
  5. Deutsche Forschungsgemeinschaft [SFB 815, A5]

Ask authors/readers for more resources

Hyperlipidemia worsens diabetic nephropathy, although the mechanism by which renal lipids accumulate is unknown. We previously demonstrated that renal proteoglycans have high low-density lipoprotein (LDL) binding affinity, suggesting that proteoglycan-mediated LDL retention may contribute to renal lipid accumulation. The aim of this study was to determine the relative effect of diabetes and hyperlipidemia on renal proteoglycan content. Diabetic and non-diabetic LDL receptor deficient mice were fed diets containing 0% or 0.12% cholesterol for 26 weeks, and then kidneys were analyzed for renal lipid and proteoglycan content. Diabetic mice on the high-cholesterol diet had accelerated development of diabetic nephropathy with elevations in urine albumin excretion, glomerular and renal hypertrophy, and mesangial matrix expansion. Renal lipid accumulation was significantly increased by consumption of the 0.12% cholesterol diet, diabetes, and especially by both. The renal proteoglycans biglycan and decorin were detectable in glomeruli, with a significant increase in renal biglycan content in diabetic mice on the high-cholesterol diet. Renal biglycan and renal apolipoprotein B were colocalized, and regression analyses showed a significant relation between renal biglycan and renal apolipoprotein B content. The increased renal biglycan content in diabetic nephropathy probably contributes to renal lipid accumulation and the development of diabetic nephropathy. (Am J Pathol 2011, 179:1179-1187; DOI: 10.1016/j.ajpath.2011.05.016)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available