4.6 Article

Genetic Ablation of TWEAK Augments Regeneration and Post-Injury Growth of Skeletal Muscle in Mice

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 177, Issue 4, Pages 1732-1742

Publisher

ELSEVIER SCIENCE INC
DOI: 10.2353/ajpath.2010.100335

Keywords

-

Categories

Funding

  1. National Institute of Health [RO1 AG029623]
  2. University of Louisville

Ask authors/readers for more resources

Impairment in the regeneration process is a critical determinant for skeletal muscle wasting in chronic diseases and degenerative muscle disorders. Inflammatory cytokines are known to cause significant muscle wasting, however, their role in myofiber regeneration is less clear. In this study we have investigated the role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in skeletal muscle regeneration in vivo. Our results show that expression levels of TWEAK and its receptor Fn14 are significantly increased in skeletal muscles of mice after injury. Genetic deletion of TWEAK increased the fiber cross-sectional area and levels of embryonic isoform of myosin heavy chain in regenerating tibial anterior muscle. Conversely, muscle-specific transgenic overexpression of TWEAK reduced the fiber cross-sectional area and levels of the embryonic myosin heavy chain in regenerating muscle. TWEAK induced the expression of several inflammatory molecules and increased interstitial fibrosis in regenerating muscle. Genetic ablation of TWEAK suppressed, whereas overexpression of TWEAK increased, the activation of nuclear factor-kappa B without affecting the activation of Akt or p38 kinase in regenerating myofilbers. Primary myoblasts from TWEAK-null mice showed enhanced differentiation in vitro, whereas myoblasts from TWEAK-Tg mice showed reduced differentiation compared with wild-type mice. Collectively, our study suggests that TWEAK negatively regulates muscle regeneration and that TWEAK is a potential therapeutic target to enhance skeletal muscle regeneration in vivo. (Am J Pathol 2010, 177:1732-1742; DOI: 10.2353/ajpath.2010.100335)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available