4.6 Article

Biliary and pancreatic dysgenesis in mice harboring a mutation in Pkhd1

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 172, Issue 2, Pages 417-429

Publisher

ELSEVIER SCIENCE INC
DOI: 10.2353/ajpath.2008.070381

Keywords

-

Categories

Funding

  1. NIDDK NIH HHS [R01 DK051041, P50 DK057328, T32 DK007276] Funding Source: Medline

Ask authors/readers for more resources

Autosomal recessive polycystic kidney disease is a hereditary fibrocystic disease that involves the kidneys and the biliary tract. Mutations in the PKHD1 gene are responsible for typical forms of autosomal recessive polycystic kidney disease. We have generated a mouse model with targeted mutation of Pkbd1 by disrupting exon 4, resulting in a mutant transcript with deletion of 66 codons and expression at similar to 30% of wild-type levels. Pkhd1(del4/d3l4) mice develop intrahepatic bile duct proliferation with progressive cyst formation and associated periportal fibrosis. In addition, these mice exhibit extrahepatic manifestations, including pancreatic cysts, splenomegaly, and common bile duct dilation. The kidneys are unaffected both histologically and functionally. Fibrocystin is expressed in the apical membranes and cilia of bile ducts and distal nephron segments but is absent from the proximal tubule. This pattern is unchanged in orthologous models of autosomal dominant polycystic kidney disease due to mutation in Pkd1 or Pkd2. Mutant fibrocystin in Pkhd1(del4/d3l4) mice also retains this expression pattern. The hypomorphic Pkhd1(del4/d3l4) mouse model provides evidence that reduced functional levels of fibrocystin are sufficient for cystogenesis and fibrosis in the liver and pancreas, but not the kidney, and supports the hypothesis of species-dependent differences in susceptibility of tissues to Pkbdl mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available