4.6 Article

Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice

Journal

CEREBRAL CORTEX
Volume 18, Issue 7, Pages 1653-1663

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhm193

Keywords

BAY36-7620; classical conditioning; hippocampus; long-term potentiation; mGluR1 receptor; synaptic plasticity

Categories

Ask authors/readers for more resources

Metabotropic glutamate receptor 1 (mGluR1) has been related to processes underlying learning in hippocampal circuits, but demonstrating its involvement in synaptic plasticity when measured directly on the relevant circuit of a learning animal has proved to be technically difficult. We have recorded the functional changes taking place at the hippocampal CA3-CA1 synapse during the acquisition of an associative task in conscious mice carrying a targeted disruption of the mGluR1 gene. Animals were classically conditioned to evoke eyelid responses, using a trace (conditioned stimulus [CS], tone; unconditioned stimulus [US], electric shock) paradigm. Acquisition of this task was impaired in mutant mGluR1(+/-) mice and abolished in mGluR1(-/-) mice. A single pulse presented to Schaffer collaterals during the CS-US interval evoked a monosynaptic field excitatory postsynaptic potential at ipsilateral CA1 pyramidal cells, whose slope was linearly related to learning evolution in controls but not in mGluR1 mutants. Long-term potentiation evoked by train stimulation of Schaffer collaterals was also impaired in both mGluR1(+/-) and mGluR1(-/-) animals. Administration of the selective mGluR1 antagonist (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydro-cyclopental [c]furan-1-on to wild-type animals mimicked the functional changes associated to mGluR1 insufficiency in mutants. Thus, mGluR1 is required for activity-dependent synaptic plasticity and associative learning in behaving mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available