4.5 Article

Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 5, Issue 1, Pages 23-31

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-007-0210-3

Keywords

electrokinesis; dielectrophoresis; DC electric field; insulating post

Ask authors/readers for more resources

This paper addresses the effects of microchannel geometry with electrically insulating posts on a particle flow driven by electrokinesis and dielectrophoresis. An in-house numerical program is developed using a numerical model proposed in literature to predict particle flows in a microchannel with a circular post array. The numerical program is validated by comparing the results of the present study to those in the literature. Results obtained from a Monte-Carlo simulation confirm the three particle flow types driven by an external DC electric field: electrokinetic flow, streaming dielectrophoretic flow, and trapping dielectrophoretic flow. In addition, we study the effects of electrokinetic and dielectrophoretic forces on particle transports by introducing a ratio of lateral to longitudinal forces exerted on a particle. As a result, we propose an improved microchannel geometry to enhance particle transports across electrokinetic streamlines for a given power dissipation. The improved microchannel has a shorter longitudinal spacing between the circular posts than a reference microchannel. We also discuss the critical values of dimensionless variables that distinguish the three particle flow types for both improved and reference microchannels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available